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Lasso, elastic net, random forest (RForest), Bayesian lasso 
(Blasso), extended Bayesian lasso (EBlasso), weighted 
Bayesian shrinkage regression (wBSR), and the average 
of all methods (Ave). The objectives were to evaluate the 
predictive ability of these methods in a cultivar population, 
to characterize them by exploring the area of applicabil-
ity of each method using simulation, and to investigate 
the causes of their different accuracies for empirical traits. 
GBLUP was the most accurate for one trait, RKHS and 
Ave for two, and RForest for three traits. In the simula-
tion, Blasso, EBlasso, and Ave showed stable performance 
across the simulated scenarios, whereas the other methods, 
except wBSR, had specific areas of applicability; wBSR 
performed poorly in most scenarios. For each method, the 
accuracy ranking for the empirical traits was largely con-
sistent with that in one of the simulated scenarios, sug-
gesting that the simulation conditions reflected the factors 
that affected the method accuracy for the empirical results. 
This study will be useful for genomic prediction not only 
in Asian rice, but also in populations from other crops with 
relatively small training sets and strong linkage disequilib-
rium structures.

Introduction

The recent development of molecular technologies has 
provided a new technique for improvement of quantitative 
traits in plant and animal breeding, called whole-genome 
prediction or genomic prediction. In this technique, genetic 
values of untested genotypes (lines or individuals) are pre-
dicted on the basis of genome-wide DNA markers such 
as single nucleotide polymorphisms (SNPs; Meuwissen 
et al. 2001). Selection based on whole-genome prediction, 
often called genomic selection, is drastically and rapidly 
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changing plant and animal breeding strategies (Hayes et al. 
2009; Heffner et al. 2009; Jannink et al. 2010).

Because prediction accuracy directly influences genetic 
gain (Falconer 1981), the development of methods that 
make highly accurate predictions has been a major goal 
in studies that evaluate the potential of genomic selection. 
Methods include genomic BLUP (GBLUP) and its exten-
sion (VanRaden 2008; Aguilar et  al. 2010; Christensen 
and Lund 2010); penalized regression methods such as 
ridge regression, Lasso, and elastic net (ENet) (Usai et al. 
2009; Li and Sillanpaa 2012a; Ogutu et al. 2012); Bayes-
ian regression methods such as BayesA and BayesB (Meu-
wissen et al. 2001; de los Campos et al. 2009; Hayashi and 
Iwata 2010; Habier et  al. 2011); non-parametric regres-
sion methods to capture non-additive genetic effects (Gia-
nola et al. 2006; Gianola and van Kaam 2008; Long et al. 
2010; Ober et  al. 2011); methods developed in the field 
of machine learning such as support vector machine and 
random forest (RForest) (Long et  al. 2011a; Ogutu et  al. 
2011); and regression methods based on dimension reduc-
tion (Solberg et al. 2009; Long et al. 2011b). Ridge regres-
sion and its equivalent GBLUP, BayesA and BayesB, and 
Bayesian lasso (Blasso; Park and Casella 2008) are popu-
lar methods, and have been evaluated in many studies 
(reviewed in de los Campos et al. 2013). In contrast, such 
methods as Lasso (Tibshirani 1996), ENet (Zou and Hastie 
2005), and RForest (Breiman 2001) have been evaluated 
only in a small number of studies (de los Campos et  al. 
2013), although these methods are commonly used in the 
field of pattern recognition and machine learning.

Comparison among prediction methods has revealed 
the factors that influence the relative performance of each 
method. For traits with fewer QTLs, the methods that have 
a variable selection feature, such as BayesB or Lasso, tend 
to outperform the methods that assume equal contributions 
of markers to genetic variance, such as ridge regression or 
GBLUP (Daetwyler et al. 2010, 2013). Because the perfor-
mance of variable selection is affected by the magnitude of 
linkage disequilibrium (LD), the relative prediction accuracy 
of BayesB and ridge regression can differ among populations 
with different LD structures even when their genetic archi-
tecture is shared (Wimmer et al. 2013). Ridge regression and 
GBLUP tend to be inferior to BayesB when predicted indi-
viduals are genetically distant from the training set, because 
these methods depend on information on relatedness rather 
than LD between markers and QTLs (Habier et  al. 2007; 
Zhong et  al. 2009). Non-parametric regression such as 
RKHS tends to be superior to additive linear regression for 
non-additive traits (Long et al. 2010; Ober et al. 2011; Gon-
zalez-Camacho et  al. 2012). These factors (genetic archi-
tecture, LD structure, and relationship between the training 
and validation sets) may differ among populations or traits, 
and complex interplay between them probably influences the 

relative performance of the prediction methods. Thus, empir-
ical method evaluation for the data of interest is necessary to 
choose the appropriate methods.

Prediction methods have been compared empirically 
for crops; for example, wheat (Crossa et al. 2010; Heffner 
et  al. 2011; Perez-Rodriguez et  al. 2012), maize (Crossa 
et al. 2010; Albrecht et al. 2011; Riedelsheimer et al. 2012; 
Zhao et  al. 2012; Crossa et  al. 2013), and barley (Lorenz 
et  al. 2012; Endelman et  al. 2014). Lorenzana and Ber-
nardo (2009) comprehensively compared multiple meth-
ods using populations of maize, barley, and Arabidopsis, 
whereas Heslot et  al. (2012) used populations of maize, 
barley, wheat, and Arabidopsis; some of these populations 
were the same in both studies. These studies provided use-
ful information on genomic prediction for traits and popu-
lations closely related to those tested. However, a drawback 
of empirical dataset comparison is that it is difficult to gen-
eralize the conclusions, because the genetic architecture of 
traits is generally ambiguous, and the causes of the differ-
ences in method accuracy are often unclear. For accurate 
characterization of prediction methods, empirical dataset 
comparison is insufficient.

This study compared whole-genome prediction methods 
using a population of Asian cultivated rice represented by 
both an empirical dataset and datasets simulated by using 
real marker genotype data. In simulations, the number of 
QTLs (Nqtl), the size of the training set (Ntrain), heritability, 
the presence of epistasis, and the extent of LD were consid-
ered as conditions. The prediction methods were GBLUP, 
RKHS, Lasso, ENet, RForest, Blasso, extended Bayesian 
Lasso (EBlasso; Mutshinda and Sillanpaa 2010), weighted 
Bayesian shrinkage regression (wBSR; Hayashi and Iwata 
2010), which is equivalent to BayesA and BayesB, and the 
average of all the methods (Ave). EBlasso was evaluated for 
genomic prediction for the first time. The objectives were: 
(1) to evaluate the predictive ability of these methods for 
rice cultivars; (2) to characterize the methods by exploring 
the area of applicability of each in simulations; and (3) to 
investigate the causes of differences in method accuracy 
for empirical data using the simulation results. Because the 
simulation is based on real marker genotype data, the results 
will be informative for other traits not tested here. Moreo-
ver, they will be useful for prediction in other populations, 
particularly those that have small training sets and strong 
LD structures, similar to the population used in this study.

Materials and methods

Plant materials and phenotype evaluation

We used a dataset of 110 rice cultivars developed mainly 
in Japan (Supplementary Table  1). A comparative study 
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was conducted for eight traits: days to heading (DH), culm 
length (CL), panicle length (PL), panicle number (PN), 
grain length (GL), grain width (GW), brown rice length 
(BL), and brown rice width (BW). Phenotypes were evalu-
ated at the National Agriculture and Food Research Organi-
zation, Western Region Agricultural Research Center, in 
Fukuyama, Hiroshima, Japan, for six consecutive years 
(2006–2011). DH was measured as the number of days 
from sowing to the time when more than half of inflores-
cences had emerged. CL was defined as the distance from 
the soil surface to the panicle node. PL was the distance 
from the panicle node to the head without the awns. PN 
was the number of normal panicles. GL, GW, BL, and BW 
were measured using a digital slide gauge. Phenotypic 
records were averaged over the 6  years. The average val-
ues were standardized when the prediction methods were 
trained.

Marker genotype data

DNA was extracted from one typical individual per cultivar 
using the CTAB method. Genotypes of 3,102 genome-wide 
bi-allelic markers were determined for the 110 cultivars. 
Among these, 3,071 were SNP markers developed from 
the genome sequence of Japanese cultivars (Yamamoto 
et  al. 2010; Nagasaki et  al. 2010), and the other 31 were 
SSR markers (Yamasaki and Ideta 2013). Genotyping was 
done on an Illumina BeadStation 500G genotyper (Illu-
mina Inc., San Diego, CA, USA) according to the manual. 
Linkage and physical distances between adjacent markers 
were 1.0−6–11.6  cM, and 0.079–2,504  kb, respectively, 
where 10  cM ≈  2,500  kb. The averages (SDs) were 0.49 
(±0.76) cM and 122.3 (±167.7) kb. The mean minor allele 
frequency was 0.309 (±0.124). LD between marker pairs 
within the same chromosome was measured as squared 
correlation (r2) of marker genotypes coded as 0 or 2.

Genetic structure

Genetic structure of the 110 cultivars was investigated 
using hierarchical clustering. Clustering was based on 
Euclidian distances calculated from the marker genotypes 
using the R function hclust (R Development Core Team 
2011).

Prediction methods

The prediction methods evaluated in this study are 
described in detail in Supplementary Methods. Briefly, we 
used the R packages, rrBLUP (ver. 4.2; Endelman 2011) 
for GBLUP and RKHS, glmnet (ver. 1.9-5; Friedman et al. 
2010) for Lasso and ENet, and randomForest (ver. 4.6-7;  
Breiman 2001) for RForest. For Blasso, EBlasso, and 

wBSR, we used programs written in C that were based on 
variational Bayesian algorithms (Li and Sillanpaa 2012b; 
Hayashi and Iwata 2013). Ave is the average of all the eight 
methods compared.

Simulation analysis

To obtain further insights related to the differences in the 
performance of the prediction methods, we simulated the 
datasets on the basis of empirical rice genotype data. The 
conditions considered were Nqtl, heritability, Ntrain, epista-
sis, and the extent of LD. Throughout the simulations, 
QTLs were chosen from the markers and predictions were 
made on the basis of the markers that were not selected 
as QTLs. Nqtl was 6, 12, 36, or 120. When Nqtl = 6, QTLs 
were selected from different chromosomes. Otherwise, 
QTLs were selected randomly. On the assumption that the 
genetic variance explained by each QTL was equal, addi-
tive effects of QTLs were determined according to the 
allele frequencies of the selected markers. The signs of 
the QTL effects were determined randomly. The breeding 
value of each of the 110 cultivars was then calculated by 
summing up all the effects of the QTL alleles harbored by 
each cultivar. Phenotypic values were generated by adding 
random Gaussian noise to the breeding values. The noise 
variance was determined on the basis of the breeding value 
variance and narrow-sense heritability, which was assumed 
to be 0.1, 0.3, 0.5, 0.7, or 0.9. Because we used 11-fold 
cross-validation (CV) to evaluate the predictive ability as 
described in the next section, the sample size of 110 cor-
responds to Ntrain = 100.

We also generated datasets with 330 and 550 cultivars, 
which correspond to Ntrain = 300 and 500, respectively. To 
retain the LD structure observed in real marker genotype 
data, we used Cholesky decomposition of the correlation 
matrix among markers according to Wimmer et al. (2013). 
C, the correlation matrix of real marker data, was approxi-
mated by a positive definite matrix, C*, by using the 
function nearPD of the R package MatrixR. By Cholesky 
decomposition of C*, the upper diagonal matrix U was cal-
culated so that C* = U′U. New genotypes G were gener-
ated as WU, where W is a binary matrix with the size of 
330 (or 550)  ×  3,102 (i.e., the number of markers). The 
elements (−1 or 1) for the marker j in W were drawn ran-
domly from a Bernoulli distribution with the parameter pj, 
which was the allele frequency of the marker j in the origi-
nal data. Because all cultivars were assumed to be inbred, 
the expected genotype frequency for each marker was 
equal to its allele frequency.

To simulate epistasis between two QTLs, Nqtl/3 pairs 
of non-overlapping QTLs were selected randomly. The 
epistatic effect of each pair was chosen randomly from 
the additive effects of the paired QTLs. The epistatic 
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components of the genetic value were generated as prod-
ucts of the epistatic effect and the genotypes of the paired 
QTLs. The total genetic value was calculated for each cul-
tivar by summing up the additive and epistatic components. 
Phenotypic values were generated by adding random noise 
to the total genetic values; the broad-sense heritability was 
assumed to be 0.1, 0.3, 0.5, 0.7, or 0.9. Typically, 40 % of 
the total genetic variance was explained by epistatic vari-
ance. Note that, when we denote the conditions of simula-
tion, we use the term “heritability” regardless of whether it 
is narrow-sense heritability, as in scenarios without epista-
sis, or broad-sense heritability, as in those with epistasis.

To investigate the influence of long-range LD on the pre-
dictive ability of the methods at Nqtl =  6, we also gener-
ated datasets in which the LD structure in the real marker 
genotype data was retained only around QTLs: genotypes 
of the markers located >10 cM from the QTLs were ran-
domly permuted. On average, 325.3 (±87.9) markers were 
located within 10 cM of the QTLs and were retained with-
out permutation.

In total, we generated 150 scenarios. Out of these, 120 
resulted from the combinations of four Nqtl values (6, 12, 
36, and 120), five heritability values (0.1, 0.3, 0.5, 0.7, and 
0.9), three Ntrain values (100, 300, and 500), and two condi-
tions (with or without epistasis). The remaining 30 scenar-
ios had disturbed LD structures and resulted from combina-
tions of one Nqtl (6) and different conditions of heritability, 
Ntrain, and epistasis. For each Nqtl value, 100 QTL sets were 
selected from the markers. The QTL positions and effects 
were shared among scenarios simulated under the same 
Nqtl. For each scenario, phenotypic values were generated 
once from each QTL set. Consequently, 100 replicates per 
scenario were tested.

Evaluation of prediction accuracy

Throughout this study, we performed 11-fold CV to evalu-
ate the predictive ability. Because the sample sizes (num-
bers of cultivars) were 110, 330, and 550, the Ntrain values 
in CV were 100, 300, and 500, respectively. The same folds 
were used for each prediction method. We conducted CV 
100 times for the empirical data and once for each replicate 
of the simulated data. For simulated data with Ntrain = 300 
and 500, cultivars were randomly partitioned into each fold. 
When the empirical genotype data and simulated data with 
Ntrain  =  100 were used, we partitioned cultivars into the 
folds in such a way that the original genetic structure (i.e., 
composition of genetic groups) was maintained in the train-
ing sets as much as possible. To make the comparison of 
prediction accuracy among studies that evaluate the meth-
ods meaningful, we measured the relationship between the 
training and validation sets using the mean squared rela-
tionship (rel2) as suggested by Daetwyler et al. (2013). rel2 

was calculated from the realized relationship matrix gener-
ated by the A.mat function in the R package rrBLUP. For 
Lasso, ENet, Blasso, EBlasso, and wBSR, hyperparameters 
were determined using nested tenfold CV (Lasso and ENet) 
or fivefold CV (Blasso, EBlasso, and wBSR) in each cycle 
of 11-fold CV. The details are given in Supplementary 
Methods.

In empirical data analysis, prediction accuracy was 
measured using the Pearson correlation coefficient between 
the predicted and phenotypic values. In simulated data 
analysis, the correlation coefficient between the predicted 
and true genotypic values was used. The true genotypic val-
ues were obtained by summation of the additive and epi-
static values when epistasis was simulated. The predicted 
values in CV were pooled across folds, and correlation 
coefficients were calculated for the pooled values. Accu-
racy among prediction methods was compared using Tuk-
ey’s test. The R functions aov and TukeyHSD were used.

Coefficients of variation of prediction accuracy

To estimate the differences in accuracy among the predic-
tion methods, we calculated the coefficients of variation of 
accuracy. Larger coefficients indicate greater relative dif-
ferences in accuracy among the methods; in these cases, the 
choice of methods has a larger impact.

Searching simulation scenarios closest to the empirical 
traits

We searched the simulation scenarios with accuracy rank-
ings among the prediction methods closest to those for the 
empirical traits. Spearman’s correlation coefficient was 
used to measure the similarity of rankings. To compare 
narrow-sense heritability of the empirical traits with nar-
row- or broad-sense heritability in the scenarios closest to 
the empirical traits, we estimated the variance components 
(σu

2 and σe
2) for the empirical traits using GBLUP.

Results

Genetic and LD structures

The cultivar population used in this study consisted of two 
major genetic groups, which included 61 and 49 cultivars 
(Supplementary Fig. 1). In CV used for comparison of pre-
diction methods applied to the empirical data, the average 
rel2 between cultivars in the training and validation sets 
was 0.154 (±0.03).

As expected from the mode of reproduction and the 
breeding schemes of Japanese rice cultivars, LD extended 
over large distances: r2 between marker pairs on the same 
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chromosomes exceeded the background level at distances 
of ≤40  cM (Fig.  1). The mean values of r2 calculated at 
1-cM windows were >0.1 until 12  cM. The mean r2 
between adjacent markers was 0.52 (±0.37).

Comparison of prediction methods for empirical data

The phenotypic values of the eight traits are summarized in 
Supplementary Fig. 2. The accuracy of genomic prediction 
for these traits is shown in Fig. 2. In general, the accuracy 
was high for DH and CL and moderate for the other traits. 
The most accurate predictions were obtained with RFor-
est for DH, PL, and PN; with RKHS for CL and BL; and 

with GBLUP for GW. The least accurate predictions were 
obtained with wBSR for DH, CL, PL, PN, GW, and BW; 
with Lasso for BL; and with EBlasso for GL. Ave gener-
ated the most accurate predictions for GL and BW. The 
coefficients of variation of prediction accuracy among the 
methods were 0.05 (DH), 0.10 (CL), 0.08 (PL), 0.13 (PN), 
0.09 (GL), 0.10 (GW), 0.11 (BL), and 0.06 (BW). The 
metrics representing the behavior of Lasso (the number of 
markers fitted, i.e., markers with non-zero effects), ENet 
(hyperparameter α), and wBSR (hyperparameter π) are 
listed in Supplementary Table 2. The hyperparameters were 
chosen using nested CV (see Supplementary Methods for 
details).

Fig. 1   Linkage disequilibrium 
(LD) measured as r2.  
a Proportions of five fractions 
of r2 values across the linkage 
distances between the marker 
pairs located on the same 
chromosomes. The proportions 
were calculated for each 5-cM 
window from 0 to 180 cM. 
b Proportions calculated for 
marker pairs located on differ-
ent chromosomes (background 
LD)

Fig. 2   Prediction accuracy of the nine methods for empirical traits. 
Accuracy was measured as the Pearson correlation coefficient 
between predicted and phenotypic values. Different subscripts indi-

cate significant differences (P < 0.05). DH days to heading, CL culm 
length, PL panicle length, PN panicle number, GL grain length, GW 
grain width, BL brown rice length, BW brown rice width
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Comparison of prediction methods for simulated data

The prediction methods were compared using the datasets 
that were simulated from the empirical genotype data and 
had different genetic architectures. The simulated data-
sets (120 scenarios in total) varied in Nqtl, Ntrain, heritabil-
ity, and the presence or absence of epistasis. The rankings 
of the prediction methods are summarized in Fig.  3. The 
accuracy for each scenario is presented in Supplementary 
Figs.  3, 4, 5. The metrics representing the behaviors of 
Lasso, ENet, and wBSR are described in Supplementary 
Figs. 6, 7, 8.

GBLUP tended to be ranked high for scenarios with 
high Nqtl and heritability values; this tendency became 
more noticeable in the absence of epistasis (Fig. 3). RKHS 
tended to outperform other methods when epistasis was 
simulated and the Nqtl and heritability values were high. 
Lasso and ENet tended to be ranked high when Nqtl was 
small and heritability was high. RForest performed well 
when Ntrain  =  100. Notably, when Ntrain  =  100, epista-
sis was simulated, and Nqtl  =  6, RForest provided the 
most accurate prediction regardless of heritability. Blasso 
and EBlasso tended to be ranked higher when heritabil-
ity was lower. wBSR performed poorly in most scenarios. 

Fig. 3   Rankings of the predic-
tion methods in the simulation 
analyses. Simulation scenarios 
(120 in total) varied in the 
number of QTLs (Nqtl, rows), 
heritability (h2, columns), the 
size of the training set (Ntrain), 
and the presence or absence 
of epistasis. The rankings are 
shown as different shades from 
white to black
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A notable feature of Blasso and EBlasso was their sta-
bility across scenarios. The average rankings for Blasso 
(3.4  ±  1.9) and EBlasso (3.7  ±  1.5) were better than 
those for GBLUP (5.2 ±  2.2), RKHS (5.1 ±  2.6), Lasso 
(6.5  ±  2.5), ENet (4.9  ±  1.9), RForest (6.1  ±  3.1), and 
wBSR (7.3 ± 1.7). Ave (2.8 ± 1.4) was also stable across 
scenarios.

The coefficient of variation of prediction accuracy 
decreased with increasing heritability or Ntrain (Table  1), 
suggesting that the choice of prediction methods becomes 
more important at low heritability or Ntrain. The coefficient 
of variation was not affected by Nqtl or epistasis (data not 
shown).

Comparison of prediction methods for simulated data 
with disturbed long‑range LD

To investigate the influence of long-range LD on the accu-
racy of the methods, the genotypes of the markers located 
>10  cM away from the simulated QTLs were randomly 
permuted. Nqtl was fixed at 6. The rankings of the methods 
are presented in Supplementary Fig. 9 and their accuracy is 
shown in Supplementary Fig. 10. Two major changes in the 
ranking were observed: (1) RKHS lost its superiority when 
epistasis was present, Ntrain = 300 or 500, and heritability 
was moderate or high; (2) EBlasso tended to become infe-
rior to other methods when Ntrain = 300 or 500 and herit-
ability was low. The metrics representing the behaviors of 
Lasso, ENet, and wBSR are described in Supplementary 
Figs. 6, 7, 8.

Scenarios closest to empirical traits

To investigate the causes of the differences in accuracy 
among the prediction methods in empirical analyses, we 
searched for the simulation scenarios closest to the empiri-
cal results for ranking of the prediction methods (Table 2; 
Fig.  4). Although moderate coefficients were observed 
across a broad range of scenarios for each trait (Fig. 4), the 
closest scenarios showed relatively high correlation coef-
ficients (Table 2). For each trait, heritability in the closest 
scenarios was moderate or high (0.5‒0.9). Nqtl was rela-
tively small (6 or 12) except for GW and BL. Scenarios 
with epistasis were found for five traits. Narrow-sense her-
itability estimated via variance component analysis using 
GBLUP is also presented in Table 2.

Discussion

We compared nine whole-genome prediction methods for 
morphological and phenological traits of Asian rice culti-
vars, and for datasets simulated on the basis of real marker 

genotype data. GBLUP, RKHS, and RForest provided the 
best accuracy for one, two, and three, respectively, out of 
the eight traits. Ave improved the accuracy for two traits. 
The simulation results suggest that GBLUP, RKHS, RFor-
est, Lasso, and ENet can be regarded as “specialist meth-
ods”, whereas Blasso, EBlasso, and Ave showed stable per-
formance across simulated scenarios and can be regarded 
as “generalist methods”. Below, we discuss the properties 
of each method. Then we discuss the causes of the differ-
ences in prediction accuracy among the methods for real 
data. Finally, we provide recommendations on the choice 
of methods for Asian rice cultivars.

GBLUP

Because GBLUP assumes that every marker contributes 
equally to genetic variance, GBLUP was ranked higher 
with increasing Nqtl, as expected. The tendency for supe-
riority of GBLUP or ridge regression in simulations with 
large Nqtl has been previously reported (e.g., Daetwyler 
et al. 2010; Jia and Jannink, 2012). The present study sug-
gests that GBLUP loses its superiority when Ntrain is small 
and heritability is low, and is outperformed by Blasso, 
EBlasso, and RForest in such cases (Fig. 3). Estimation of 
parameters of GBLUP from data via REML is likely prob-
lematic when heritability is low and Ntrain is small, whereas 
prior distributions of Blasso and EBlasso probably compen-
sate for reduced information from data. This interpretation 
implies that, under these conditions, GBLUP in a Bayesian 
framework (Legarra et al. 2008; Makowsky et al. 2011) or 
Bayesian ridge regression (Crossa et al. 2010; Perez-Rod-
riguez et  al. 2012) can be more robust than REML-based 
GBLUP.

RKHS

The simulation results suggest that RKHS performs well 
in scenarios where heritability is high, Nqtl is large, and 
epistasis is present. The superiority of RKHS over addi-
tive regression methods in scenarios with epistasis is 

Table 1   Coefficients of variation of accuracy among the nine predic-
tion methods in simulation scenarios where Nqtl = 6 and epistasis was 
absent

Coefficients of variation were calculated for each replicate and aver-
aged. SDs are shown in parentheses

Ntrain Heritability

0.1 0.3 0.5 0.7 0.9

100 3.02 (6.39) 0.85 (2.23) 0.20 (0.43) 0.11 (0.07) 0.09 (0.05)

300 0.54 (1.16) 0.05 (0.03) 0.04 (0.02) 0.05 (0.02) 0.06 (0.02)

500 0.20 (0.58) 0.04 (0.02) 0.04 (0.01) 0.04 (0.02) 0.05 (0.01)
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consistent with the theory of this method and has been 
previously reported (e.g., Gonzalez-Camacho et al. 2012). 
The reason for the effect of heritability on the ranking of 
RKHS would be similar to that for GBLUP: the REML-
based methods would be more sensitive to the reduction of 
information from data than Bayesian hierarchical methods. 
Bayesian inference of RKHS (Gonzalez-Recio et al. 2008; 
de los Campos et  al. 2010) probably makes the method 
more robust, although it increases the computational time 
because of Markov chain Monte Carlo sampling. Because 
RKHS is based on a kernel matrix generated from whole-
genome markers, it is intuitively understandable that RKHS 
is superior in scenarios where Nqtl is large. The results that 
RKHS lost its superiority when long-range LD was dis-
turbed probably support this interpretation: when long-
range LD is intact, the effects of QTLs will disperse across 

markers in a certain range, which would benefit RKHS. 
Conversely, the effects of QTLs will be limited to the mark-
ers adjacent to these QTLs when long-range LD was dis-
turbed. RKHS would lose its superiority in this case.

Lasso

Lasso was ranked higher in scenarios with smaller Nqtl, 
higher heritability, and larger Ntrain. Lasso has the variable 
selection feature because of the L1 penalty, whereas ridge 
regression shrinks all coefficients together toward zero 
because of the L2 penalty (Hastie et  al. 2009). Therefore, 
Lasso outperformed GBLUP and RKHS, the counterparts 
of ridge regression, as expected, in scenarios with smaller 
Nqtl. Similar results were reported in previous simulation 
studies (Usai et  al. 2009; Ogutu et  al. 2012). This supe-
riority of Lasso was rapidly lost with increasing Nqtl and 
decreasing heritability and Ntrain. As shown by Donoho 
and Stodden (2006), the performance of Lasso in variable 
selection is sensitive to the ratio between the numbers of 
true non-zero variables (k), samples (n), and variables (p): 
at a given underdeterminedness level (n/p), variable selec-
tion fails to work once the sparsity level (k/n) is beyond 
a certain point (breakdown point). The breakdown point 
comes earlier with decreasing underdeterminedness level 
or increasing noise (residual variance). In genomic predic-
tion, if we consider that the underdeterminedness level is 
usually much lower than one and QTL effects are dispersed 
across multiple markers because of LD (i.e., k is expected 
to be greater than Nqtl), Lasso expectedly has a narrow area 
of applicability.

When variables are highly correlated, Lasso performs 
poorly for variable selection (Buhlmann and van de Geer 
2011). In fact, Wimmer et al. (2013) showed that variable 
selection of Lasso became harder with stronger LD struc-
ture. We disturbed long-range LD by permuting the geno-
types of markers that were farther from the QTLs than 
10  cM, and expected the accuracy of Lasso to increase. 

Table 2   Simulation scenarios closest to the empirical traits in terms 
of the ranking of the prediction methods

a  Broad-(narrow-) sense heritability when epistasis is (is not) simu-
lated
b  Spearman’s rank correlation coefficient
c  Estimated narrow-sense heritability. The additive genetic (Vu) and 
residual (Ve) variances were estimated using GBLUP. The realized 
genomic relationship matrix used in GBLUP was created using the 
A.mat function in the rrBLUP package (Endelman 2011)

Trait Scenario ρ (p value)b Vu/(Vu + Ve)
c

Nqtl h2a Epistasis

DH 12 0.7 + 0.95 (3.5e − 4) 1.00

CL 12 0.7 + 0.82 (1.2e − 2) 1.00

PL 6 0.9 + 0.78 (1.7e − 2) 0.71

PN 6 0.5 − 0.78 (1.7e − 2) 0.51

GL 12 0.9 − 0.67 (5.9e − 2) 0.40

GW 36 0.9 − 0.93 (7.5e − 4) 0.82

BL 120 0.7 + 0.88 (3.1e − 3) 0.55

BW 12 0.9 + 0.85 (6.1e − 3) 0.52

Fig. 4   Spearman’s correlation 
coefficients between the rank-
ings of the prediction methods 
for empirical traits and those 
in scenarios with Ntrain = 100. 
Arrows indicate the scenarios 
that showed the highest coef-
ficients, i.e., scenarios closest 
to the empirical traits. DH days 
to heading, CL culm length, PL 
panicle length, PN panicle num-
ber, GL grain length, GW grain 
width, BL brown rice length, 
BW brown rice width
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A slight decrease in accuracy (Supplementary Figs.  3, 4, 
5, 10) indicates that, at least under this sparsity (>6/100, 
because k will be larger than Nqtl) and underdeterminedness 
(~100/3,000) levels, the magnitude of LD in this population 
does not greatly affect the predictive performance of Lasso.

ENet

ENet showed ranking tendencies similar to those of Lasso, 
probably because both methods share the variable selec-
tion feature. When epistasis was absent, ENet provided the 
most accurate prediction in scenarios where Ntrain = 300 or 
500, heritability =  0.7 or 0.9, and Nqtl =  12. These con-
ditions were similar to the optimal conditions for Lasso 
except that optimal Nqtl for Lasso was 6. This result sug-
gests that the area of applicability of ENet is character-
ized by Nqtl slightly larger than that optimal for Lasso. 
Because of the L1 and L2 penalties, ENet has the variable 
selection feature as Lasso has, and also shrinks the coef-
ficients of selected variables together as ridge regression 
does (Zou and Hastie 2005; Hastie et al. 2009). The advan-
tages of ENet for genomic prediction in comparison with 
Lasso are that ENet can select correlated markers with non-
zero effects as a group; and ENet can select more mark-
ers than Ntrain, whereas the maximum number of markers 
selected by Lasso is equal to Ntrain (Zou and Hastie 2005). 
Thus, more markers are selected by ENet than by Lasso, 
which is consistent with our observations (data not shown) 
and was reported by Li and Sillanpaa (2012a). This fea-
ture is probably involved in defining the area of applicabil-
ity of ENet, which favors larger Nqtl than Lasso. However, 
in scenarios where Nqtl =  36 and 120, ENet tended to be 
inferior to GBLUP (ridge regression). Similar results have 
been reported by Wimmer et al. (2013): ENet tends to be 
intermediate between Lasso and ridge regression or infe-
rior to both, but is rarely superior. Perhaps this result stems 
from the narrow area of applicability of ENet in genomic 
prediction.

RForest

The area of applicability of RForest included scenarios 
where heritability was low and Nqtl and Ntrain were small. 
The superiority of RForest in low-heritability scenarios 
may be attributable to bagging (Breiman 1996), which 
is known to work well with noisy data (Dietterich 2000). 
Regardless of heritability and Ntrain, the accuracy of RFor-
est tended to decrease slightly with increasing Nqtl. We 
speculate that because large Nqtl and strong LD made the 
effects of many markers similar to each other, correlation 
among the residuals of trees was not decreased much by the 
random choice of markers at each node (for the principles 
of RForest, see Supplementary Methods). Alternatively, the 

reduced accuracy might result from the insufficient number 
of variables randomly selected at each node (mtry), which 
was set at one-third of the number of markers (i.e.,~1,000). 
As Ntrain increased, the ranking of RForest tended to 
decrease, although its accuracy increased. This indicates 
that other regression methods such as GBLUP or ENet ben-
efited more from increased Ntrain than RForest did, possibly 
because RForest uses on average 63 % of the samples for 
the learning tree because of bootstrapping (Kohavi 1995).

RForest tended to be ranked higher in scenarios where 
epistasis was simulated. This feature was expected because 
of the recursive structure of the regression tree. Attempts 
to identify epistatic SNPs (QTLs) using RForest have 
been reported (Bureau et  al. 2005; Jiang et  al. 2009; Yao 
et al. 2013). The capability of RForest to capture epistasis 
is likely restricted by two factors: (1) at least one marker 
(QTL) among those involved in epistasis should have 
detectable additive effects so that it can be used for split-
ting; and (2) all the markers involved in epistasis should 
be selected as candidates at least once at different tandem 
nodes. The first factor has been pointed out by Breiman 
et  al. (1984) in the context of determining the right size 
of trees. The second one emerges because RForest selects 
the mtry variables randomly as candidates at each node to 
reduce the correlation between residuals of trees (Breiman 
2001). To detect a high-order interaction, mtry should be 
sufficiently large, but large mtry increases the correlation 
between trees and reduces the effectiveness of bagging 
(Hastie et  al. 2009). In addition, the depths of the trees 
should be sufficiently large. In the present study, we sim-
ply simulated epistasis as an additive-by-additive interac-
tion between two QTLs. If epistasis is simulated in a more 
complex manner, RForest might lose its superiority. When 
Ntrain was large (300 or 500), RForest (and RKHS in the 
low-heritability cases) was often inferior to additive regres-
sion methods (Blasso or ENet), although epistasis was sim-
ulated. The additive regression methods achieved higher 
accuracy than RForest via more accurate prediction for the 
additive components of genotypic effects (data not shown). 
Thus, if the proportion of epistatic variance increases more 
than that used in this study (typically 40  %), the relative 
rankings of RForest (and RKHS) and additive regression 
methods might differ.

Blasso

Blasso showed stable performance across scenarios. As 
shown by Park and Casella (2008), Blasso (and probably 
EBlasso) is a compromise between Lasso and ridge regres-
sion: as the regularization parameter �2

B
 increases (for the 

explanation of �
2

B
, see Supplementary Methods), Blasso 

pulls small marker effects close to zero faster than ridge 
regression does; but Blasso does not compress them to zero 
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as Lasso does. This property, together with the prior infor-
mation on parameters and a grid search of the hyperparam-
eter of �2

B
, probably allows stable performance of Blasso 

across genetic architectures. Although ENet can also be 
seen as a compromise between ridge regression and Lasso 
because it shares the variable selection feature with Lasso 
(Hastie et al. 2009), the tendencies in the rankings of ENet 
and Blasso differed considerably. With a benchmark dataset 
(which is oligogenic) from the XIIth QTLMAS workshop 
(Lund et  al. 2009), Blasso was found to be less accurate 
than Lasso and ENet (Li and Sillanpaa 2012a) but more 
accurate than ridge regression (Usai et  al. 2009). We also 
observed this tendency in our simulation scenarios when 
Nqtl = 6, Ntrain = 300 or 500, and heritability >0.3. Li and 
Sillanpaa (2012a) attributed the lower accuracy of Blasso 
to a stronger underestimation of regression coefficients, 
which probably results from a compromise between ridge 
regression and Lasso.

EBlasso

To overcome the above drawback of Blasso, Mutshinda and 
Sillanpaa (2010) proposed EBlasso, which has the marker-
specific shrinkage factor η2

j  (for the explanation of η2

j , see 
Supplementary Methods), and showed that EBlasso is more 
suitable for QTL mapping than Blasso. We evaluated the 
potential of EBlasso for genomic prediction. In simulation 
analyses, both Blasso and EBlasso showed stable perfor-
mance across genetic architectures and Ntrain values. As 
expected, EBlasso ranked higher than Blasso when Nqtl = 6 
and epistasis was absent. This suggests its superiority over 
Blasso in capturing the association signals of QTLs. How-
ever, when Nqtl = 6 and heritability was high, EBlasso was 
inferior to Lasso. This result suggests that EBlasso still 
tends to underestimate the regression coefficients in com-
parison with Lasso. Disturbing long-range LD led to a 
strong dependence of EBlasso performance on heritability 
when Ntrain = 300 and 500. This behavior resembled that of 
Lasso. However, the cause of this phenomenon is difficult 
to deduce. Further studies are required to understand this 
property of EBlasso in genomic prediction.

wBSR

We expected wBSR to perform better in scenarios with 
small Nqtl, but its performance was generally poor and no 
clear areas of applicability were found. This unexpected 
result probably stems from three causes. One is the low 
training set size. BayesA or BayesB, which are statistically 
equivalent to wBSR, outperform GBLUP and ridge regres-
sion for simulated oligogenic traits (e.g., Zhang et al. 2010; 
Clark et al. 2011; Sun et al. 2012; Daetwyler et al. 2013); 
BayesB may outperform GBLUP and ridge regression for 

relatively polygenic traits (Zhang et  al. 2010; Sun et  al. 
2012). In the above studies, the training set sizes (≥1,000) 
were much larger than our largest Ntrain. The second cause 
is a strong LD structure. Similar to variable selection by 
Lasso, that by BayesB can be hampered by strong LD. 
Thus, the predictive ability of BayesB is also affected by 
strong LD (Wimmer et al. 2013). As shown in Supplemen-
tary Fig. 8, the π values chosen via CV were decreased by 
disturbing long-range LD, particularly when Ntrain = 300 or 
500 and heritability >0.3. This indicates that a smaller num-
ber of markers had heavier weights when LD was disturbed, 
i.e., variable selection was stronger. However, the accuracy 
of wBSR was still inferior to that of Lasso or ENet, which 
suggests that long-range LD was not the only factor that 
affected wBSR performance. The third cause is the non-
optimized hyperparameters, ν and S2 (for the explanation 
of ν and S2, see Supplementary Methods), which define the 
prior distribution of the marker effect variance. We tuned π 
via a grid search, but fixed ν at 4 and determined S2 at each 
π value according to the assumption on the proportion of 
phenotypic variance that markers can explain. Because this 
proportion was unknown, we set it to 0.5. This choice might 
affect the performance. Moreover, the equation to determine 
S2 that we adopted assumes linkage equilibrium (Habier 
et al. 2011). For populations with strong LD, this simplified 
assumption might not result in an optimal value of S2. As 
pointed out by Gianola et al. (2009), the severe influence of 
the prior distribution of marker effects is unavoidable under 
the model structure of wBSR, where variance of the effect 
of each marker has to be learned on the basis of only one 
observation, i.e., the effect of the marker. This influence can 
be alleviated to some extent by estimating hyperparameters 
as unknown variables (Nadaf et al. 2012).

Ave

Ave is a naïve application of ensemble learning. A key for 
successful ensemble learning is the diversity of ensem-
ble members. Krogh and Vedelsby (1995) showed that the 
ensemble generalization error can be reduced by increas-
ing the variance of predictions among ensemble members, 
which is referred to as ensemble ambiguity. Ave applied 
to a simulated benchmark dataset of Hickey and Gorjanc 
(2012) did not improve the accuracy, especially for oligo-
genic traits (Daetwyler et  al. 2013). A possible reason for 
the failure could be that the ensemble ambiguity was not 
sufficiently large, because the ensemble included similar 
methods such as linear regression with the variable selec-
tion feature (BayesB, BayesC, Lasso, and Bayesian stochas-
tic search variable selection), and ridge regression and its 
equivalents (GBLUP and pedigree-based BLUP). Particu-
larly for the additive oligogenic traits, the ensemble ambigu-
ity will not be increased by adding such regression methods 
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as ensemble members, because most regression methods 
with the variable selection feature will provide similar pre-
dictions based on several major QTLs. Considering this, 
the averaging approach would be more effective for com-
plex and non-additive traits. In our simulations, this seems 
to hold because Ave showed a slightly better performance 
when epistasis was present (Fig. 3). However, in a study by 
Heslot et al. (2012), the accuracy was improved only for 2 
traits out of 18, although the superiority of RKHS for most 
traits suggested non-additive genetic effects controlled by a 
number of QTLs. Further studies are required to understand 
the properties of the averaging (combining) approach, in 
particular the appropriate member combinations.

Causes of the differences in prediction accuracy 
for empirical data

In comparative studies using empirical data, the causes 
of the differences in accuracy among methods are usually 
unclear. We attempted to infer the causes by searching the 
scenarios closest to the empirical results for ranking of 
the methods. This inference is challenging because infer-
ence of genetic architecture requires many more samples 
(cultivar numbers) than those used in the present study, as 
suggested by Agarwala et al. (2013). The results obtained 
were uncertain, as illustrated by a broad range of moderate 
correlation coefficients (Fig. 4). In addition, large discrep-
ancies between the two kinds of estimates of heritability, 
those from the closest scenario and those from the variance 
component analysis, were observed, particularly for GL 
and BW (Table  2). These discrepancies might stem from 
too simplified simulation schemes, unreliable estimation 
of the variance components because of the small sample 
size, or both, in addition to the difference in the definition 
of heritability, i.e., narrow- or broad-sense. Nevertheless, 
for most traits, the rankings of the methods for the empiri-
cal traits did not deviate considerably from those for the 
closest scenarios (Table 2), suggesting that these scenarios 
may include factors causing the differences in accuracy in 
empirical analyses.

Two discrepancies were observed in this experiment. 
First, the observed accuracies for DH and CL ranged from 
0.60 (wBSR for CL) to 0.87 (RForest for DH), whereas 
those for the closest scenarios ranged from 0.43 (wBSR) 
to 0.51 (RForest), although the accuracy was measured in 
simulations as the correlation between the predicted and 
true genotypic values. This suggests the factors that influ-
ence the accuracy without considerably affecting the rank-
ings of the methods. Second, the difference in Nqtl of the 
closest scenarios between GL (12) and BL (120) seems too 
great, although the two traits are unlikely to have consider-
ably different genetic architectures. The phenotypic corre-
lation was high (0.87). We speculate that some non-genetic 

factors, such as measurement error, might affect the pheno-
typic values for GL because the prediction accuracy for GL 
was generally lower than for BL, the Spearman’s correla-
tion coefficient was the lowest, and narrow-sense heritabil-
ity estimated from the variance components was also the 
lowest (Table 2).

Choice of the prediction methods in Asian rice breeding

When epistasis is expected to influence the traits, we rec-
ommend RKHS or RForest, which have complementary 
areas of applicability. When epistasis is absent, we recom-
mend GBLUP or Blasso. The situations where Lasso or 
ENet are useful will be limited, unless the size of the train-
ing set is very large. Although Blasso is appealing in terms 
of its robustness, averaging predictions of several methods 
is superior to Blasso in this sense. The choice of the predic-
tion method becomes less important as Ntrain or heritability 
increases, whereas the method should be chosen carefully 
when Ntrain is small or heritability is low. RKHS (or ker-
nel regression) and ensemble learning, including methods 
based on bagging, such as RForest, have a good potential 
for further improvement.
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